metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42.108D10, C10.162+ 1+4, C10.582- 1+4, (C4×D4)⋊8D5, D4⋊10(C4×D5), D4⋊2D5⋊5C4, (D4×C20)⋊10C2, (D4×Dic5)⋊9C2, C4⋊C4.315D10, Dic10⋊22(C2×C4), (C4×Dic10)⋊30C2, (C2×D4).246D10, C42⋊D5⋊12C2, C20.68(C22×C4), C10.44(C23×C4), (C2×C10).90C24, (C22×C4).46D10, Dic5⋊4D4⋊46C2, Dic5⋊3Q8⋊15C2, C2.4(D4⋊6D10), (C2×C20).491C23, (C4×C20).150C22, C22⋊C4.131D10, D10.18(C22×C4), C22.33(C23×D5), (D4×C10).254C22, C4⋊Dic5.362C22, Dic5.40(C22×C4), C23.169(C22×D5), C2.3(D4.10D10), C23.11D10⋊28C2, (C22×C10).160C23, (C22×C20).363C22, C5⋊4(C23.33C23), (C4×Dic5).223C22, (C2×Dic5).212C23, (C22×D5).179C23, C23.D5.104C22, D10⋊C4.121C22, (C2×Dic10).295C22, C10.D4.134C22, (C22×Dic5).95C22, C4.33(C2×C4×D5), (D5×C4⋊C4)⋊14C2, (C4×D5)⋊4(C2×C4), C5⋊D4⋊8(C2×C4), (C5×D4)⋊23(C2×C4), (C4×C5⋊D4)⋊41C2, C22.3(C2×C4×D5), C2.25(D5×C22×C4), (C2×C4×D5).72C22, (C2×Dic5)⋊13(C2×C4), (C2×D4⋊2D5).9C2, (C2×C10.D4)⋊38C2, (C5×C4⋊C4).324C22, (C2×C10).10(C22×C4), (C2×C4).283(C22×D5), (C2×C5⋊D4).119C22, (C5×C22⋊C4).143C22, SmallGroup(320,1218)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C42.108D10
G = < a,b,c,d | a4=b4=c10=1, d2=a2, ab=ba, cac-1=dad-1=a-1, bc=cb, dbd-1=a2b, dcd-1=a2c-1 >
Subgroups: 862 in 294 conjugacy classes, 151 normal (43 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C5, C2×C4, C2×C4, C2×C4, D4, D4, Q8, C23, C23, D5, C10, C10, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C4○D4, Dic5, Dic5, C20, C20, D10, D10, C2×C10, C2×C10, C2×C10, C2×C4⋊C4, C42⋊C2, C4×D4, C4×D4, C4×Q8, C2×C4○D4, Dic10, C4×D5, C4×D5, C2×Dic5, C2×Dic5, C2×Dic5, C5⋊D4, C2×C20, C2×C20, C2×C20, C5×D4, C22×D5, C22×C10, C23.33C23, C4×Dic5, C4×Dic5, C10.D4, C10.D4, C4⋊Dic5, D10⋊C4, C23.D5, C4×C20, C5×C22⋊C4, C5×C4⋊C4, C2×Dic10, C2×C4×D5, C2×C4×D5, D4⋊2D5, C22×Dic5, C2×C5⋊D4, C22×C20, D4×C10, C4×Dic10, C42⋊D5, C23.11D10, Dic5⋊4D4, Dic5⋊3Q8, D5×C4⋊C4, C2×C10.D4, C4×C5⋊D4, D4×Dic5, D4×C20, C2×D4⋊2D5, C42.108D10
Quotients: C1, C2, C4, C22, C2×C4, C23, D5, C22×C4, C24, D10, C23×C4, 2+ 1+4, 2- 1+4, C4×D5, C22×D5, C23.33C23, C2×C4×D5, C23×D5, D5×C22×C4, D4⋊6D10, D4.10D10, C42.108D10
(1 128 63 143)(2 144 64 129)(3 130 65 145)(4 146 66 121)(5 122 67 147)(6 148 68 123)(7 124 69 149)(8 150 70 125)(9 126 61 141)(10 142 62 127)(11 102 87 48)(12 49 88 103)(13 104 89 50)(14 41 90 105)(15 106 81 42)(16 43 82 107)(17 108 83 44)(18 45 84 109)(19 110 85 46)(20 47 86 101)(21 154 74 139)(22 140 75 155)(23 156 76 131)(24 132 77 157)(25 158 78 133)(26 134 79 159)(27 160 80 135)(28 136 71 151)(29 152 72 137)(30 138 73 153)(31 91 54 116)(32 117 55 92)(33 93 56 118)(34 119 57 94)(35 95 58 120)(36 111 59 96)(37 97 60 112)(38 113 51 98)(39 99 52 114)(40 115 53 100)
(1 14 53 25)(2 15 54 26)(3 16 55 27)(4 17 56 28)(5 18 57 29)(6 19 58 30)(7 20 59 21)(8 11 60 22)(9 12 51 23)(10 13 52 24)(31 79 64 81)(32 80 65 82)(33 71 66 83)(34 72 67 84)(35 73 68 85)(36 74 69 86)(37 75 70 87)(38 76 61 88)(39 77 62 89)(40 78 63 90)(41 100 158 128)(42 91 159 129)(43 92 160 130)(44 93 151 121)(45 94 152 122)(46 95 153 123)(47 96 154 124)(48 97 155 125)(49 98 156 126)(50 99 157 127)(101 111 139 149)(102 112 140 150)(103 113 131 141)(104 114 132 142)(105 115 133 143)(106 116 134 144)(107 117 135 145)(108 118 136 146)(109 119 137 147)(110 120 138 148)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 10 63 62)(2 61 64 9)(3 8 65 70)(4 69 66 7)(5 6 67 68)(11 16 87 82)(12 81 88 15)(13 14 89 90)(17 20 83 86)(18 85 84 19)(21 71 74 28)(22 27 75 80)(23 79 76 26)(24 25 77 78)(29 73 72 30)(31 51 54 38)(32 37 55 60)(33 59 56 36)(34 35 57 58)(39 53 52 40)(41 104 105 50)(42 49 106 103)(43 102 107 48)(44 47 108 101)(45 110 109 46)(91 113 116 98)(92 97 117 112)(93 111 118 96)(94 95 119 120)(99 115 114 100)(121 149 146 124)(122 123 147 148)(125 145 150 130)(126 129 141 144)(127 143 142 128)(131 159 156 134)(132 133 157 158)(135 155 160 140)(136 139 151 154)(137 153 152 138)
G:=sub<Sym(160)| (1,128,63,143)(2,144,64,129)(3,130,65,145)(4,146,66,121)(5,122,67,147)(6,148,68,123)(7,124,69,149)(8,150,70,125)(9,126,61,141)(10,142,62,127)(11,102,87,48)(12,49,88,103)(13,104,89,50)(14,41,90,105)(15,106,81,42)(16,43,82,107)(17,108,83,44)(18,45,84,109)(19,110,85,46)(20,47,86,101)(21,154,74,139)(22,140,75,155)(23,156,76,131)(24,132,77,157)(25,158,78,133)(26,134,79,159)(27,160,80,135)(28,136,71,151)(29,152,72,137)(30,138,73,153)(31,91,54,116)(32,117,55,92)(33,93,56,118)(34,119,57,94)(35,95,58,120)(36,111,59,96)(37,97,60,112)(38,113,51,98)(39,99,52,114)(40,115,53,100), (1,14,53,25)(2,15,54,26)(3,16,55,27)(4,17,56,28)(5,18,57,29)(6,19,58,30)(7,20,59,21)(8,11,60,22)(9,12,51,23)(10,13,52,24)(31,79,64,81)(32,80,65,82)(33,71,66,83)(34,72,67,84)(35,73,68,85)(36,74,69,86)(37,75,70,87)(38,76,61,88)(39,77,62,89)(40,78,63,90)(41,100,158,128)(42,91,159,129)(43,92,160,130)(44,93,151,121)(45,94,152,122)(46,95,153,123)(47,96,154,124)(48,97,155,125)(49,98,156,126)(50,99,157,127)(101,111,139,149)(102,112,140,150)(103,113,131,141)(104,114,132,142)(105,115,133,143)(106,116,134,144)(107,117,135,145)(108,118,136,146)(109,119,137,147)(110,120,138,148), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10,63,62)(2,61,64,9)(3,8,65,70)(4,69,66,7)(5,6,67,68)(11,16,87,82)(12,81,88,15)(13,14,89,90)(17,20,83,86)(18,85,84,19)(21,71,74,28)(22,27,75,80)(23,79,76,26)(24,25,77,78)(29,73,72,30)(31,51,54,38)(32,37,55,60)(33,59,56,36)(34,35,57,58)(39,53,52,40)(41,104,105,50)(42,49,106,103)(43,102,107,48)(44,47,108,101)(45,110,109,46)(91,113,116,98)(92,97,117,112)(93,111,118,96)(94,95,119,120)(99,115,114,100)(121,149,146,124)(122,123,147,148)(125,145,150,130)(126,129,141,144)(127,143,142,128)(131,159,156,134)(132,133,157,158)(135,155,160,140)(136,139,151,154)(137,153,152,138)>;
G:=Group( (1,128,63,143)(2,144,64,129)(3,130,65,145)(4,146,66,121)(5,122,67,147)(6,148,68,123)(7,124,69,149)(8,150,70,125)(9,126,61,141)(10,142,62,127)(11,102,87,48)(12,49,88,103)(13,104,89,50)(14,41,90,105)(15,106,81,42)(16,43,82,107)(17,108,83,44)(18,45,84,109)(19,110,85,46)(20,47,86,101)(21,154,74,139)(22,140,75,155)(23,156,76,131)(24,132,77,157)(25,158,78,133)(26,134,79,159)(27,160,80,135)(28,136,71,151)(29,152,72,137)(30,138,73,153)(31,91,54,116)(32,117,55,92)(33,93,56,118)(34,119,57,94)(35,95,58,120)(36,111,59,96)(37,97,60,112)(38,113,51,98)(39,99,52,114)(40,115,53,100), (1,14,53,25)(2,15,54,26)(3,16,55,27)(4,17,56,28)(5,18,57,29)(6,19,58,30)(7,20,59,21)(8,11,60,22)(9,12,51,23)(10,13,52,24)(31,79,64,81)(32,80,65,82)(33,71,66,83)(34,72,67,84)(35,73,68,85)(36,74,69,86)(37,75,70,87)(38,76,61,88)(39,77,62,89)(40,78,63,90)(41,100,158,128)(42,91,159,129)(43,92,160,130)(44,93,151,121)(45,94,152,122)(46,95,153,123)(47,96,154,124)(48,97,155,125)(49,98,156,126)(50,99,157,127)(101,111,139,149)(102,112,140,150)(103,113,131,141)(104,114,132,142)(105,115,133,143)(106,116,134,144)(107,117,135,145)(108,118,136,146)(109,119,137,147)(110,120,138,148), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10,63,62)(2,61,64,9)(3,8,65,70)(4,69,66,7)(5,6,67,68)(11,16,87,82)(12,81,88,15)(13,14,89,90)(17,20,83,86)(18,85,84,19)(21,71,74,28)(22,27,75,80)(23,79,76,26)(24,25,77,78)(29,73,72,30)(31,51,54,38)(32,37,55,60)(33,59,56,36)(34,35,57,58)(39,53,52,40)(41,104,105,50)(42,49,106,103)(43,102,107,48)(44,47,108,101)(45,110,109,46)(91,113,116,98)(92,97,117,112)(93,111,118,96)(94,95,119,120)(99,115,114,100)(121,149,146,124)(122,123,147,148)(125,145,150,130)(126,129,141,144)(127,143,142,128)(131,159,156,134)(132,133,157,158)(135,155,160,140)(136,139,151,154)(137,153,152,138) );
G=PermutationGroup([[(1,128,63,143),(2,144,64,129),(3,130,65,145),(4,146,66,121),(5,122,67,147),(6,148,68,123),(7,124,69,149),(8,150,70,125),(9,126,61,141),(10,142,62,127),(11,102,87,48),(12,49,88,103),(13,104,89,50),(14,41,90,105),(15,106,81,42),(16,43,82,107),(17,108,83,44),(18,45,84,109),(19,110,85,46),(20,47,86,101),(21,154,74,139),(22,140,75,155),(23,156,76,131),(24,132,77,157),(25,158,78,133),(26,134,79,159),(27,160,80,135),(28,136,71,151),(29,152,72,137),(30,138,73,153),(31,91,54,116),(32,117,55,92),(33,93,56,118),(34,119,57,94),(35,95,58,120),(36,111,59,96),(37,97,60,112),(38,113,51,98),(39,99,52,114),(40,115,53,100)], [(1,14,53,25),(2,15,54,26),(3,16,55,27),(4,17,56,28),(5,18,57,29),(6,19,58,30),(7,20,59,21),(8,11,60,22),(9,12,51,23),(10,13,52,24),(31,79,64,81),(32,80,65,82),(33,71,66,83),(34,72,67,84),(35,73,68,85),(36,74,69,86),(37,75,70,87),(38,76,61,88),(39,77,62,89),(40,78,63,90),(41,100,158,128),(42,91,159,129),(43,92,160,130),(44,93,151,121),(45,94,152,122),(46,95,153,123),(47,96,154,124),(48,97,155,125),(49,98,156,126),(50,99,157,127),(101,111,139,149),(102,112,140,150),(103,113,131,141),(104,114,132,142),(105,115,133,143),(106,116,134,144),(107,117,135,145),(108,118,136,146),(109,119,137,147),(110,120,138,148)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,10,63,62),(2,61,64,9),(3,8,65,70),(4,69,66,7),(5,6,67,68),(11,16,87,82),(12,81,88,15),(13,14,89,90),(17,20,83,86),(18,85,84,19),(21,71,74,28),(22,27,75,80),(23,79,76,26),(24,25,77,78),(29,73,72,30),(31,51,54,38),(32,37,55,60),(33,59,56,36),(34,35,57,58),(39,53,52,40),(41,104,105,50),(42,49,106,103),(43,102,107,48),(44,47,108,101),(45,110,109,46),(91,113,116,98),(92,97,117,112),(93,111,118,96),(94,95,119,120),(99,115,114,100),(121,149,146,124),(122,123,147,148),(125,145,150,130),(126,129,141,144),(127,143,142,128),(131,159,156,134),(132,133,157,158),(135,155,160,140),(136,139,151,154),(137,153,152,138)]])
74 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | ··· | 4J | 4K | ··· | 4X | 5A | 5B | 10A | ··· | 10F | 10G | ··· | 10N | 20A | ··· | 20H | 20I | ··· | 20X |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 5 | 5 | 10 | ··· | 10 | 10 | ··· | 10 | 20 | ··· | 20 | 20 | ··· | 20 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 10 | 10 | 2 | ··· | 2 | 10 | ··· | 10 | 2 | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | ··· | 4 |
74 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | - | |||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C4 | D5 | D10 | D10 | D10 | D10 | D10 | C4×D5 | 2+ 1+4 | 2- 1+4 | D4⋊6D10 | D4.10D10 |
kernel | C42.108D10 | C4×Dic10 | C42⋊D5 | C23.11D10 | Dic5⋊4D4 | Dic5⋊3Q8 | D5×C4⋊C4 | C2×C10.D4 | C4×C5⋊D4 | D4×Dic5 | D4×C20 | C2×D4⋊2D5 | D4⋊2D5 | C4×D4 | C42 | C22⋊C4 | C4⋊C4 | C22×C4 | C2×D4 | D4 | C10 | C10 | C2 | C2 |
# reps | 1 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 16 | 2 | 2 | 4 | 2 | 4 | 2 | 16 | 1 | 1 | 4 | 4 |
Matrix representation of C42.108D10 ►in GL6(𝔽41)
40 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 22 | 0 |
0 | 0 | 0 | 40 | 0 | 22 |
0 | 0 | 26 | 0 | 1 | 0 |
0 | 0 | 0 | 26 | 0 | 1 |
32 | 0 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 | 0 |
0 | 0 | 17 | 1 | 0 | 0 |
0 | 0 | 40 | 24 | 0 | 0 |
0 | 0 | 0 | 0 | 17 | 1 |
0 | 0 | 0 | 0 | 40 | 24 |
0 | 34 | 0 | 0 | 0 | 0 |
6 | 35 | 0 | 0 | 0 | 0 |
0 | 0 | 5 | 25 | 26 | 7 |
0 | 0 | 16 | 16 | 34 | 34 |
0 | 0 | 7 | 35 | 36 | 16 |
0 | 0 | 6 | 6 | 25 | 25 |
6 | 34 | 0 | 0 | 0 | 0 |
5 | 35 | 0 | 0 | 0 | 0 |
0 | 0 | 25 | 5 | 7 | 26 |
0 | 0 | 16 | 16 | 34 | 34 |
0 | 0 | 35 | 7 | 16 | 36 |
0 | 0 | 6 | 6 | 25 | 25 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,26,0,0,0,0,40,0,26,0,0,22,0,1,0,0,0,0,22,0,1],[32,0,0,0,0,0,0,32,0,0,0,0,0,0,17,40,0,0,0,0,1,24,0,0,0,0,0,0,17,40,0,0,0,0,1,24],[0,6,0,0,0,0,34,35,0,0,0,0,0,0,5,16,7,6,0,0,25,16,35,6,0,0,26,34,36,25,0,0,7,34,16,25],[6,5,0,0,0,0,34,35,0,0,0,0,0,0,25,16,35,6,0,0,5,16,7,6,0,0,7,34,16,25,0,0,26,34,36,25] >;
C42.108D10 in GAP, Magma, Sage, TeX
C_4^2._{108}D_{10}
% in TeX
G:=Group("C4^2.108D10");
// GroupNames label
G:=SmallGroup(320,1218);
// by ID
G=gap.SmallGroup(320,1218);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,758,387,570,80,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=a^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=a^2*b,d*c*d^-1=a^2*c^-1>;
// generators/relations